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1 Introduction

The idea of noncommuting spacetime coordinates goes back to Heisenberg who suggested [1]

that uncertainty relations between coordinates could resolve the ultraviolet (UV) diver-

gences arising in quantum field theories. The issue was then investigated by Snyder in [2],

but did not attract much interest at the time. However, in the last two decades noncommu-

tative geometry has found applications in many branches of physics such as quantum field

theory and particle physics, solid state physics and many others. Comprehensive reviews

on the subject can be found in references [3–9].

Having in mind problems which physics encounters at small scales (high energies), in

recent years attempts were made to combine supersymmetry (SUSY) with noncommutative

geometry. Different models were constructed, see for example [10–15]. Some of these

models emerge naturally as low energy limits of string theories in backgrounds with a

constant Neveu-Schwarz two form and/or a constant Ramond-Ramond two form. In [13]

the anticommutation relations between the fermionic coordinates were modified in the

following way

{θα ⋆, θβ} = Cαβ, {θ̄α̇
⋆, θ̄

β̇
} = {θα ⋆, θ̄α̇} = 0 , (1.1)

where Cαβ = Cβα is a complex constant symmetric matrix. The analysis is done in Eu-

clidean space, since the deformation (1.1) is hermitian only in Euclidean signature where

undotted and dotted spinors are not related by the usual complex conjugation. Note that
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the ⋆-product used in (1.1) is also well defined in Minkowskian signature although in that

case it is not hermitian [14]. The chiral coordinates ym = xm + iθσmθ̄ commute in this set-

ting, therefore the notion of chirality is preserved, i.e. the ⋆-product of two chiral superfields

is again a chiral superfield. On the other hand, the constructed models break one half of the

N = 1 SUSY so they are invariant only under the so-called N = 1/2 SUSY. Renormalizabil-

ity of the Wess-Zumino models with this deformation was considered, see for example [16].

Some of the obtained results are: the renormalizability is lost already at the one loop level,

but it can be restored by adding to the classical action new couplings (interaction terms)

which depend on the deformation parameter. Also, a pure gauge sector which is supergauge

invariant and one loop renormalizable can be constructed [17]. Recently, a renormalizable

N = 1/2 super-Yang-Mills model with interacting matter was constructed in [18].

Another type of deformation was introduced in [14]. There the product of two chi-

ral superfields is not a chiral superfield but the model is invariant under the full super-

symmetry. A deformation of the Hopf algebra of SUSY transformations by a twist was

considered in [19].

In our previous paper [20] we applied the twist formalism to deform the Hopf algebra

of N = 1 SUSY transformations. Our choice of the twist is different from that in [19].

We work in Minkowski space-time and choose a hermitian twist. As undotted and dotted

spinors are related by the usual complex conjugation, we obtain

{θα ⋆, θβ} = Cαβ, {θ̄α̇
⋆, θ̄

β̇
} = C̄

α̇β̇
, {θα ⋆, θ̄α̇} = 0 , (1.2)

with C̄
α̇β̇

= (Cαβ)∗. The deformed Wess-Zumino Lagrangian was formulated and analyzed;

the action which follows is invariant under the twisted SUSY transformations. Superfields

transform in the undeformed way, while the Leibniz rule for SUSY transformations (when

they act on a product of superfields) is modified. Since the action is non-local it is difficult

(but not impossible) to discuss renormalizability properties of the model.

Nevertheless, we are interested in renormalizability properties of theories with twisted

symmetries. It is important to understand whether deforming (by a twist) of symmetries

spoils some of the renormalizability properties of SUSY invariant theories. Therefore, in

this paper we analyze a simpler model with the twist given by

F = e
1

2
CαβDα⊗Dβ , (1.3)

where Cαβ = Cβα ∈ C is a complex constant matrix and Dα = ∂α − iσ αα̇
m θ̄α̇∂m are the

SUSY covariant derivatives.

Following the method of [20] in the next section we introduce the deformation and

the ⋆-product which follows from it. Due to our choice of the twist (1.3), the coproduct

of SUSY transformations1 remains undeformed, leading to the undeformed Leibniz rule.

Being interested in deformations of the Wess-Zumino model, we discuss chiral fields and

their products. The product of two chiral fields is not a chiral field and we have to use the

projectors defined in [21] to separate chiral and antichiral parts. All possible invariants are

1We only consider the N = 1 SUSY in this paper. The generalization to N = 2 SUSY and higher can

be obtained by following the same steps as in section 2.
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listed in section 4 and the deformed Wess-Zumino action is constructed in section 5. Using

the background field method we then analyze two-point functions and their divergences.

Finally, we give some comments and compare our results with the results already present

in the literature. Some details of the calculations are collected in appendices A and B.

2 D-deformation of the Hopf algebra of SUSY transformations

The undeformed superspace is generated by the coordinates x, θ and θ̄ which fulfill

[xm, xn] = [xm, θα] = [xm, θ̄α̇] = 0,

{θα, θβ} = {θ̄α̇, θ̄β̇} = {θα, θ̄α̇} = 0, (2.1)

with m = 0, . . . 3 and α, β = 1, 2. To xm we refer as to bosonic and to θα and θ̄α̇ we refer

as to fermionic coordinates. Also, x2 = xmxm = −(x0)2 + (x1)2 + (x2)2 + (x3)2. A general

superfield F (x, θ, θ̄) can be expanded in powers of θ and θ̄

F (x, θ, θ̄) = f(x) + θφ(x) + θ̄χ̄(x) + θθm(x) + θ̄θ̄n(x) + θσmθ̄vm

+θθθ̄λ̄(x) + θ̄θ̄θϕ(x) + θθθ̄θ̄d(x). (2.2)

Under the infinitesimal SUSY transformations it transforms in the following way

δξF =
(

ξQ+ ξ̄Q̄
)

F, (2.3)

where ξ and ξ̄ are constant anticommuting parameters and Q and Q̄ are the SUSY gener-

ators

Qα = ∂α − iσm
αα̇θ̄

α̇∂m, (2.4)

Q̄α̇ = ∂̄α̇ − iθασm
αβ̇
εβ̇α̇∂m. (2.5)

As in [20, 22], we introduce a deformation of the Hopf algebra of infinitesimal SUSY

transformations by choosing the twist F in the following way

F = e
1

2
CαβDα⊗Dβ , (2.6)

with the complex constant matrix Cαβ = Cβα ∈ C. Note that this twist is not hermitian,

F∗ 6= F . The usual complex conjugation is denoted by “∗”. It can be shown [23] that (2.6)

satisfies all the requirements for a twist [24]. The Hopf algebra of SUSY transformation

does not change since

{Qα,Dβ} = {Q̄α̇,Dβ} = 0 (2.7)

and it is given by

• algebra

{Qα, Qβ} = {Q̄α̇, Q̄β̇
} = 0, {Qα, Q̄β̇

} = 2iσm
αβ̇
∂m,

[∂m, ∂n] = [∂m, Qα] = [∂m, Q̄α̇] = 0. (2.8)

– 3 –
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• coproduct

∆Qα = Qα ⊗ 1 + 1⊗Qα, ∆Q̄α̇ = Q̄α̇ ⊗ 1 + 1⊗ Q̄α̇,

∆∂m = ∂m ⊗ 1 + 1⊗ ∂m. (2.9)

• counit and antipode

ε(Qα) = ε(Q̄α̇) = ε(∂m) = 0,

S(Qα) = −Qα, S(Q̄α̇) = −Q̄α̇, S(∂m) = −∂m. (2.10)

This means that the full supersymmetry is preserved.

Strictly speaking, the twist (2.6) does not belong to the universal enveloping algebra

of the Lie algebra of infinitesimal SUSY transformations. Therefore, to be mathematically

correct we should enlarge the algebra (2.8) by introducing the relations for the operators

Dα as well. Note that the same happened in [20], where the twist was given by

F = e
1

2
Cαβ∂α⊗∂β+ 1

2
C̄

α̇β̇
∂̄α̇⊗∂̄β̇

, (2.11)

with the complex constant matrix Cαβ = Cβα and Cαβ and C̄ α̇β̇ were related by the usual

complex conjugation. There we had to enlarge the algebra by adding the relations for the

fermionic derivatives ∂α and ∂̄α̇.

The inverse of the twist (2.6)

F−1 = e−
1

2
CαβDα⊗Dβ , (2.12)

defines the ⋆-product. For two arbitrary superfields F and G the ⋆-product reads

F ⋆ G = µ⋆{F ⊗G}
= µ{F−1 F ⊗G}
= µ{e− 1

2
CαβDα⊗DβF ⊗G}

= F ·G− 1

2
(−1)|F |Cαβ(DαF ) · (DβG)

−1

8
CαβCγδ(DαDγF ) · (DβDδG), (2.13)

where |F | = 1 if F is odd (fermionic) and |F | = 0 if F is even (bosonic). The second line

of (2.13) is the definition of the µ⋆ multiplication. No higher powers of Cαβ appear since

the derivatives Dα are Grassmanian. The ⋆-product (2.13) is associative,2 noncommutative

and in the zeroth order in the deformation parameter Cαβ it reduces to the usual pointwise

multiplication. One should also note that it is not hermitian,

(F ⋆ G)∗ 6= G∗ ⋆ F ∗. (2.15)

2The associativity of the ⋆-product follows from the cocycle condition [24] which the twist F has to fulfill

F12(∆ ⊗ id)F = F23(id ⊗ ∆)F , (2.14)

where F12 = F ⊗ 1 and F23 = 1⊗F . It can be shown that the twist (2.6) indeed fulfills this condition, see

for details [23].
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The ⋆-product (2.13) leads to

{θα ⋆, θβ} = Cαβ, {θ̄α̇
⋆, θ̄

β̇
} = {θα ⋆, θ̄α̇} = 0,

[xm ⋆, xn] = −Cαβ(σmnε)αβ θ̄θ̄,

[xm ⋆, θα] = −iCαβσm
ββ̇
θ̄β̇, [xm ⋆, θ̄α̇] = 0. (2.16)

The chiral coordinates ym also do not commute

[ym ⋆, yn] = −8θ̄θ̄Cαβ(σmnε)αβ . (2.17)

Other (anti)commutation relations follow in a similar way.

Relations (2.16) enable us to define the deformed superspace. It is generated by the

usual bosonic and fermionic coordinates (2.1) while the deformation is contained in the

new product (2.13). From (2.16) it follows that both fermionic and bosonic part of the

superspace are deformed. This is different from [20] where only the fermionic coordi-

nates were deformed.

The deformed infinitesimal SUSY transformation is defined as

δ⋆
ξF =

(

ξQ+ ξ̄Q̄
)

F. (2.18)

Since the coproduct (2.9) is undeformed, the usual (undeformed) Leibniz rule follows. Then

the ⋆-product of two superfields is again a superfield. Its transformation law is given by

δ⋆
ξ (F ⋆ G) =

(

ξQ+ ξ̄Q̄
)

(F ⋆ G)

= (δ⋆
ξF ) ⋆ G+ F ⋆ (δ⋆

ξG). (2.19)

3 Chiral fields

Since we are interested in possible deformations of the usual3 Wess-Zumino action, we now

analyze chiral fields and their ⋆-products.

A chiral field Φ fulfills D̄α̇Φ = 0, where D̄α̇ = −∂̄α̇−iθασm
αα̇∂m and D̄α̇ is related to Dα

by the usual complex conjugation. In terms of the component fields the chiral superfield

Φ is given by

Φ(x, θ, θ̄) = A(x) +
√

2θαψα(x) + θθH(x) + iθσlθ̄(∂lA(x))

− i√
2
θθ(∂mψ

α(x))σm
αα̇θ̄

α̇ +
1

4
θθθ̄θ̄(�A(x)). (3.1)

The ⋆-product of two chiral fields reads

Φ ⋆Φ = Φ · Φ− 1

8
CαβCγδDαDγΦDβDδΦ

= Φ · Φ− 1

32
C2(D2Φ)(D2Φ)

= A2 − C2

2
H2 + 2

√
2Aθαψα

3In this paper “usual“ always refers to undeformed, that is to the case Cαβ = 0.
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−i
√

2C2Hθ̄α̇σ̄
mα̇α(∂mψα) + θθ

(

2AH − ψψ
)

+C2θ̄θ̄

(

−H�A+
1

2
(∂mψ)σmσ̄l(∂lψ)

)

)

+iθσmθ̄
(

∂m(A2) + C2H∂mH
)

+i
√

2θθθ̄α̇σ̄
mα̇α

(

∂m(ψαA)
)

+

√
2

2
θ̄θ̄C2(−Hθ�ψ + θσmσ̄n∂nψ∂mH)

+
1

4
θθθ̄θ̄

(

�A2 − 1

2
C2

�H2

)

, (3.2)

where C2 = CαβCγδεαγεβδ. Because of the θ̄, θ̄θ̄ and the θθ̄θ̄ terms (3.2) is not a chiral

field. Following the method developed in [20] we decompose the ⋆-products of chiral fields

into their irreducible components by using the projectors defined in [21]. The antichiral,

chiral and transversal projectors are defined as follows

P1 =
1

16

D2D̄2

�
, (3.3)

P2 =
1

16

D̄2D2

�
, (3.4)

PT = −1

8

DD̄2D

�
. (3.5)

The chiral part of (3.2) is undeformed and it is given by (for details we refer to [20])

P2(Φ ⋆Φ) = ΦΦ

= A2 + 2
√

2Aθαψα + θθ
(

2AH − ψψ
)

+iθσmθ̄
(

∂m(A2)
)

+ i
√

2θθθ̄α̇σ̄
mα̇α

(

∂m(ψαA)
)

+
1

4
θθθ̄θ̄�A2. (3.6)

The antichiral part reads

P1(Φ ⋆ Φ) = −C
2

2
H2 − i

√
2C2Hθ̄σ̄m∂mψ + C2θ̄θ̄

(

−H�A+
1

2
(∂mψ)σmσ̄l(∂lψ)

)

)

+iθσmθ̄C2H∂mH +

√
2

2
θ̄θ̄C2(−Hθ�ψ + θσmσ̄n∂nψ∂mH)

−1

8
θθθ̄θ̄C2

�H2. (3.7)

In this case there is no transverse part of Φ ⋆ Φ,

PT (Φ ⋆ Φ) = 0. (3.8)

Next, we calculate the ⋆-product of three chiral fields. The following identity applies

(Φ ⋆ Φ) ⋆ Φ = (Φ · Φ + P1(Φ ⋆ Φ)) ⋆ Φ

= ΦΦΦ− 1

32
C2D2(ΦΦ)D2Φ + P1(Φ ⋆Φ)Φ, (3.9)
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with

− 1

32
C2D2(ΦΦ)D2Φ = C2

[

−AH2 +
1

2
H(ψψ) − i

√
2AHθ̄σ̄n(∂nψ)

−i
√

2(θ̄σ̄m∂m(Aψ))H +
i
√

2

2
(θ̄σ̄n∂nψ)(ψψ)

+θ̄θ̄

(

−AH�A− 1

2
H�A2 +

1

2
ψψ�A

+∂m(Aψ)σmσ̄n(∂nψ)

)

+iθσmθ̄∂m

(

AH2 − 1

2
Hψψ

)

+

√
2

2
(θ̄θ̄)

(

−AHθ�ψ +
1

2
(θ�ψ)(ψψ) −Hθ�(Aψ)

+θσnσ̄m∂m(Aψ)(∂nH) +
1

2
θσlσ̄m(∂mψ)∂l(2AH − ψψ)

)

+
1

4
θθθ̄θ̄�

(

−AH2 +
1

2
(ψψ)H

)]

(3.10)

and

P1(Φ ⋆ Φ) ⋆ Φ = P1(Φ ⋆ Φ) · Φ

= C2

[

− 1

2
AH2 −

√
2

2
θψH2 − 1

2
θθH3 − i

√
2(θ̄σ̄m(∂mψ))AH

+(θ̄θ̄)

(

−HA�A+
1

2
A(∂lψ)σlσ̄m(∂mψ)

)

+i(θσlθ̄)

(

1

2
A(∂lH

2)− 1

2
H2(∂lA) + (ψσlσ̄

m(∂mψ))H

)

+i
√

2

(

1

4
(θθ)(θ̄σ̄lψ)(∂lH

2)− 5

4
(θθ)(θ̄σ̄m(∂mψ))H2

)

+

√
2

2
θ̄θ̄

(

θσmσ̄n∂m(H∂nψ)A− 2(θψ)

(

H�A− 1

2
(∂mψ)σmσ̄n(∂nψ)

)

−(H∂lA)θσlσ̄m(∂mψ)

)

+θθθ̄θ̄

(

− 1

8
A�H2 − 9

8
H2

�A− 1

2
ψσmσ̄n∂m(H∂nψ)

+H(∂mψ)σmσ̄n(∂nψ) +
1

4
(∂mA)(∂mH2)

)

]

. (3.11)

It is easy to see that

P2(Φ ⋆Φ) ⋆ Φ = ΦΦΦ− 1

32
C2D2(ΦΦ)D2Φ. (3.12)

The projections are given by

P1(P2(Φ ⋆Φ) ⋆Φ) = − 1

32
C2D2(ΦΦ)D2Φ

P2(P2(Φ ⋆Φ) ⋆Φ) = ΦΦΦ. (3.13)

– 7 –
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4 Invariants

Let us now examine the transformation laws under the deformed SUSY transforma-

tions (2.18) of terms which could be relevant for the construction of a SUSY invariant

action.

There are two quadratic (in the number of fields) invariants,4 I1 and I2:

I1 = P2(Φ ⋆ Φ)
∣

∣

∣

θθ
= 2AH − ψψ, (4.1)

I2 = P1(Φ ⋆ Φ)
∣

∣

∣

θ̄θ̄
= −C2

(

H�A− 1

2
(∂mψ)σmσ̄n(∂nψ)

)

. (4.2)

Their transformation laws are given by

δ⋆
ξ I1 = 2i

√
2ξ̄σ̄m∂m(Aψ), (4.3)

δ⋆
ξ I2 =

√
2C2ξσmσ̄n∂m(H(∂nψ)). (4.4)

Looking at cubic terms we see that there are more candidates for possible invariants.

The first two are I3 and I4:

I3 = P2(P2(Φ ⋆ Φ) ⋆ Φ)
∣

∣

∣

θθ
= 3(A2H −Aψψ), (4.5)

I4 = P1(P2(Φ ⋆ Φ) ⋆ Φ)
∣

∣

∣

θ̄θ̄

= C2

(

−AH�A− 1

2
H�A2

+
1

2
ψψ�A+ ∂m(Aψ)σmσ̄n(∂nψ)

)

. (4.6)

One can check that they indeed transform as total derivatives. Two more candidates are

given by

I5 = P1(P1(Φ ⋆ Φ) ⋆ Φ)
∣

∣

∣

θ̄θ̄
= C2

(

−AH�A+
1

2
A(∂lψ)σlσ̄m(∂mψ)

)

, (4.7)

I6 = P2(P1(Φ ⋆ Φ) ⋆ Φ)
∣

∣

∣

θθ
= −C

2

2
H3. (4.8)

However they do not transform as total derivatives

δ⋆
ξI5 =

C2

2
ξα
(

− 2H(A�ψα + ψα�A) + 2(σmσ̄l) β
α (∂lψβ)(∂mH)A

+ψα(∂lψ)σlσ̄m(∂mψ)
)

(4.9)

6= ∂m(. . . ),

δ⋆
ξI6 = − 3i√

2
C2ξ̄σ̄m(∂mψ)H2 (4.10)

4Strictly speaking, terms I1 and I2 are invariant only under the integral
R

d4x, that is when included in

an action. Since the construction of an invariant action is our aim, we continue with this abuse of notation

and call ”invariant“ all terms that under SUSY transformations transform as total derivatives.
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6= ∂m(. . . ).

Inclusion of these terms will not lead to a SUSY invariant action. The last candidate for

a cubic invariant is I7:

I7 = P2(P1(Φ ⋆Φ) ⋆Φ)
∣

∣

∣

θθθ̄θ̄
= −C

2

16

(

A�H2 + 5H2
�A (4.11)

−4H(∂mψ)σmσ̄l(∂lψ) + 2ψσmσ̄l∂m(H(∂lψ))
)

.

Since we are interested in equations of motion we omitted a term which is a total derivative

in (4.11). Note also that the terms P1(P1(Φ ⋆ Φ) ⋆ Φ)
∣

∣

∣

θθθ̄θ̄
and P2(P1(Φ ⋆ Φ) ⋆ Φ)

∣

∣

∣

θθθ̄θ̄
are

equal up to a total derivative term and therefore lead to the same equations of motion.

Since I7 is the highest component of a superfield, under (2.18) it transforms as a total

derivative and can be included in a SUSY invariant action.

5 SUSY invariant Wess-Zumino model

In order to write the SUSY invariant action we collect all invariant terms and obtain the

following Lagrangian

L = Φ+ ⋆ Φ
∣

∣

∣

θθθ̄θ̄
+

[

m

2

(

P2(Φ ⋆Φ)
∣

∣

∣

θθ
+ aP1(Φ ⋆Φ)

∣

∣

∣

θ̄θ̄

)

+
λ

3

(

P2(P2(Φ ⋆ Φ) ⋆ Φ)
∣

∣

∣

θθ
+ bP1(P2(Φ ⋆ Φ) ⋆ Φ)

∣

∣

∣

θ̄θ̄

+2c(P1 + P2)(P1(Φ ⋆Φ) ⋆ Φ)
∣

∣

∣

θθθ̄θ̄

)

+ c.c.

]

, (5.1)

with m, λ, a, b and c real constant parameters. Terms P1(P1(Φ⋆Φ)⋆Φ)
∣

∣

∣

θθθ̄θ̄
and P2(P1(Φ⋆

Φ) ⋆ Φ)
∣

∣

∣

θθθ̄θ̄
are equal up to a total derivative term and are therefore included with the

same coefficient. The action in component fields which follows from (5.1) reads

S =

∫

d4x

{

A∗
�A+ i∂mψ̄σ̄

mψ +H∗H

+m

(

AH − 1

2
ψψ

)

+m

(

A∗H∗ − 1

2
ψ̄ψ̄

)

+λ(A2H −Aψψ) + λ
(

(A∗)2H∗ −A∗ψ̄ψ̄
)

+

[

C2

(

ma1

(

1

2
ψ�ψ −H�A

)

+ λa2

(

−AH�A− 1

2
H(�A2)

+
1

2
ψψ(�A) +Aψ�ψ

)

+ λa3

(

− 3

2
H2

�A+
3

2
H(∂mψ)σmσ̄l(∂lψ)

))

+ c.c.

]}

. (5.2)

The coefficients a, b and c are related to a1, a2 and a3: a/2 = a1, b/3 = a2 and c = a3.

Note that (5.2) is the full action, i.e. no higher order terms in the deformation parameter

Cαβ appear.

– 9 –



J
H
E
P
0
4
(
2
0
0
9
)
1
0
8

Varying the action (5.2) with respect to the fields H and H∗ we obtain the equations

of motion for these fields

H∗ = −mA− λA2 +ma1C
2(�A) + λa2C

2

(

A�A+
1

2
(�A2)

)

−3

2
λa3C

2
(

− 2H(�A) + (∂mψ)σmσ̄l(∂lψ)
)

, (5.3)

H = −mA∗ − λ(A∗)2 +ma1C̄
2(�A∗) + λa2C̄

2

(

A∗
�A∗ +

1

2
(�A∗2)

)

−3

2
λa3C̄

2
(

− 2H∗(�A∗) + (∂mψ̄)σ̄mσl(∂lψ̄)
)

. (5.4)

Unlike in the undeformed theory, equations (5.3) and (5.4) are nonlinear in H and H∗.
Nevertheless they can be solved

H∗ =
(

1− 9(λa3)
2C2C̄2(�A∗)(�A)

)−1
{

−mA∗ − λ(A∗)2

+ma1C̄
2(�A∗) + λa2C̄

2

(

A∗
�A∗ +

1

2
(�A∗)2

)

−3λa3C̄
2(�A∗)

(

mA+ λA2
)

− 3

2
λa3C̄

2(∂mψ̄)σ̄mσl(∂lψ̄)

+3λa3C̄
2(�A∗)

[

ma1C
2(�A) + λa2C

2

(

A�A+
1

2
(�A)2

)

−3

2
λa3C

2(∂mψ)σmσ̄l(∂lψ)

]}

, (5.5)

and similarly for H. These solutions we can expand up to second order in the deformation

parameter and insert in the action (5.2). The action then becomes

S = S0 + S2, (5.6)

with

S0 =

∫

d4x

{

A∗
�A+ i(∂mψ̄)σ̄mψ − m

2

(

ψψ + ψ̄ψ̄
)

− λ
(

A∗ψ̄ψ̄ +Aψψ
)

−m2A∗A−mλA(A∗)2 −mλA∗A2 − λ2A2(A∗)2
}

, (5.7)

S2 =

∫

d4x

{

C2ma1

(

1

2
ψ(�ψ) + (�A)(mA∗ + λ(A∗)2)

)

+C2λa2

(

1

2
ψψ(�A) +Aψ(�ψ) + (mA∗ + λ(A∗)2)

(

A(�A) +
1

2
(�A2)

))

−3

2
C2λa3(mA

∗ + λ(A∗)2)
(

(�A)(mA∗ + λ(A∗)2) + (∂mψ)σmσ̄l(∂lψ)
)

+C̄2ma1

(

1

2
ψ̄(�ψ̄) + (�A∗)(mA+ λA2)

)

(5.8)

+C̄2λa2

(

1

2
ψ̄ψ̄(�A∗) +A∗ψ̄(�ψ̄) + (mA+ λA2)

(

A∗(�A∗) +
1

2
(�(A∗)2)

))

−3

2
C̄2λa3(mA+ λA2)

(

(�A∗)(mA+ λA2) + (∂mψ̄)σ̄mσl(∂lψ̄)
)

}

.
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6 Renormalizability properties: two-point Green functions

In this section we investigate some renormalizability properties of our model. Using the

background field method [25] and the dimensional reduction [26]5 the divergent part of

the effective action up to second order in fields is calculated. Note that we work with the

action (5.2) and not with (5.6).

To start with, we rewrite the deformed action (5.2) introducing the real fields S, P , E

and G as

A =
S + iP√

2
, H =

E + iG√
2

(6.1)

and the Majorana spinor6 ψM =

(

ψα

ψ̄α̇

)

. The deformation parameter Cαβ can be written

in the following way

Cαβ = Kab(σ
abε)αβ , C̄α̇β̇ = K∗

ab(εσ̄
ab)α̇β̇. (6.2)

Since Kab is a self dual tensor we write it as

Kab = κab +
i

2
ǫabcdκ

cd, (6.3)

where κab is a real antisymmetric tensor. In this way we obtain

C2 + C̄2 = 4κabκ
ab (6.4)

C2 − C̄2 = 2iǫabcdκ
abκcd. (6.5)

In order to simplify our calculation we will assume that C2 − C̄2 = 0. This choice can be

obtained by setting κ0i = 0.

With all this and introducing g = λ√
2

the action (5.2) becomes7

S = S0 + S2

with

S0 =

∫

d4x

{

1

2
S�S +

1

2
P�P − 1

2
(iψ̄γm∂mψ +mψ̄ψ) +

1

2
(E2 +G2)

+m(SE − PG)− gSψ̄ψ + gP ψ̄γ5ψ

+g(ES2 − EP 2 − 2SPG)

}

, (6.7)

S2 = C2

∫

d4x

{

ma1

(

1

2
ψ̄�ψ − E�S +G�P

)

5The method of dimensional regularization has a draw-back that it might not preserve the supersym-

metry. Therefore one uses a modification of it, the so-called dimensional reduction.
6The index M on the Majorana spinors will be omitted in the following formulas.
7In the notation of [21] the matrix γ5 and the Lorentz generators Σmn are defined as

γ
5 = γ

0
γ

1
γ

2
γ

3
, Σmn =

1

4
[γm

, γ
n]. (6.6)
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+ga2(PG�S − SE�S + PE�P + SG�P

−1

2
(S2

�E − P 2
�E − 2SP�G) +

1

2
ψ̄ψ�S

−1

2
ψ̄γ5ψ�P + ψ̄�ψS − ψ̄γ5

�ψP )

+
3

2
ga3(−E2

�S +G2
�S + 2EG�P − E∂mψ̄∂

mψ

+ G∂mψ̄γ
5∂mψ − 2ψ̄Σmn∂nψ∂mE + 2ψ̄Σmnγ5∂nψ∂mG)

}

. (6.8)

We split the fields into their classical and quantum parts, for example E → E + E .
The action quadratic in quantum fields is

S(2) =
1

2

(

Ψ̄ S P E G
)

M















Ψ

S
P
E
G















, (6.9)

where Ψ, Ψ̄, S, P, E , G are quantum fields. The one loop effective action is then

Γ =
i

2
STr ln

[

1 + (�−m2)−1MC
]

, (6.10)

with

C =















−i/∂ +m 0 0 0 0

0 1 0 −m 0

0 0 1 0 m

0 −m 0 � 0

0 0 m 0 �















. (6.11)

The matrix MC can be decomposed into three parts

MC = N + T + V. (6.12)

The zeroth order (in the deformation parameter) term is given by

N=2g















(−S + γ5P )(−i/∂ +m) −ψ γ5ψ mψ mγ5ψ

−ψ̄(−i/∂ +m) (E −mS) −(G+mP ) −mE + S� −mG− P�

ψ̄γ5(−i/∂ +m) −G+mP −E −mS mG− P� −mE − S�

0 S −P −mS −mP
0 −P −S mP −mS















. (6.13)

The second order term (in the deformation parameter) which contains no fields is

T = ma1C
2















�(−i/∂ +m) 0 0 0 0

0 m
←−
� 0 −←−�−→� 0

0 0 m
←−
� 0

←−
�
−→
�

0 −� 0 m� 0

0 0 � 0 m�















. (6.14)
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The matrix V is second order in the deformation parameter and contains classical fields

linearly. Its matrix elements are given in appendix A.

The one-loop divergent part of the effective action we calculate up to second order in

g, second order in fields (two-point functions) and up to second order in the deformation

parameter Cαβ . Therefore the effective action is given by

Γ =
i

2
STr ln

[

1 + (�−m2)−1(N + T + V )
]

=
i

2

[

STr((�−m2)−1(N + T + V ))

−1

2
STr((� −m2)−1N(�−m2)−1N)

−STr((�−m2)−1N(� −m2)−1(T + V ))

+STr(((� −m2)−1N)2(� −m2)−1T )
]

. (6.15)

The calculation of divergent parts of supertraces is tedious but straightforward and here we

give only the results. The details are given in appendix B. Denoting K = �−m2, we have

STr(K−1(N + T + V )) = 0, (6.16)

STr(K−1NK−1N) =
ig2

π2ǫ

∫

d4x

×
[

S�S + P�P − ψ̄i/∂ψ + E2 +G2
]

, (6.17)

STr
[

K−1NK−1T
]

= 0, (6.18)

STr(K−1NK−1V ) = −g2C2 i

2π2ǫ

∫

d4x
[

3a3m
2(−2P�G

−ψ̄�ψ + 2S�E)

+a2((�S)2 + (�P )2 + 4m2S�S

−ψ̄i/∂�ψ − 2m2ψ̄i/∂ψ + 4m2P�P

+4m2E2 + E�E +G�G+ 4m2G2)
]

, (6.19)

STr(K−1NK−1NK−1T ) =
2iC2a1m

2g2

π2ǫ

∫

d4x

×
[

S�S + P�P − ψ̄i/∂ψ + E2 +G2
]

. (6.20)

In (6.19) terms (�S)2 and (�P )2 appear. Since these terms do not have classical coun-

terparts we take a2 = 0. Then the divergent part of the one loop effective action (6.15) is

given by

Γ1 =
g2

π2ǫ

∫

d4x

[

1

4
(S�S + P�P + ψ̄i/∂ψ +E2 +G2)

+
3

4
a3C

2m2(2P�G+ ψ̄�ψ − 2S�E)

−C2a1m
2(S�S + P�P − ψ̄i/∂ψ + E2 +G2)

]

. (6.21)
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Let us now discuss the one-loop renormalizability properties of our model. To cancel

the divergences we have to add to the classical Lagrangian the counterterms

LB = L0 + L2 − Γ1. (6.22)

In this way we obtain the bare Lagrangian LB. It is important to note that the term

I7 in the classical action (5.2) produces divergences proportional to I2 (compare (6.19)

and (6.8)), so both of them are necessary in order to absorb the divergences in the effective

action. From the form of the bare Lagrangian we see that all fields are renormalized in

the same way:

S0 =
√
ZS, P0 =

√
ZP, ψ0 =

√
Zψ, E0 =

√
ZE, G0 =

√
ZG, (6.23)

with

Z = 1− g2

2π2ǫ
(1− 4a1m

2C2). (6.24)

The tadpole contributions add up to zero as in the commutative case. Also, δm = 0, i.e.

there are no δmψ̄ψ and δm(SE + PG) counterterms. It is obvious that the deformation

parameter has to be renormalized too,

C2
0 =

(

1− 3a3g
2

2π2a1ǫ

)

C2 . (6.25)

The present analysis is not complete and we plan to consider the vertex corrections in a

forthcoming publication. From the vertex corrections we should draw conclusions about the

renormalization of the coupling constant g and about the renormalizability of the full model.

Finally, let us make a comment concerning the non-renormalization theorem.

From (6.21) we see that the divergent part of the effective action consists of the usual

term (Φ+Φ)
∣

∣

∣

θθθ̄θ̄
and a new (compared to the undeformed case) term P1(Φ ⋆ Φ)

∣

∣

∣

θ̄θ̄
. Both

terms are expressible as integrals over the whole superspace. In particular, for the new

term we have

P1(Φ ⋆ Φ)
∣

∣

∣

θ̄θ̄
=

∫

d4x d2 θ̄d2 θ θθP1(Φ ⋆ Φ)

= − 1

32
C2

∫

d4x d2 θ̄d2 θ θθ(D2Φ)(D2Φ)

=
1

8
C2

∫

d4x d2 θ̄d2 θ Φ(D2Φ). (6.26)

We see that at the level of two-point Green functions there is no need to deform the

nonrenormalization theorem. This conclusion is different from [27].

7 Conclusions

In order to see how a deformation by twist of the usual Wess-Zumino model affects its

renormalizability properties, we considered a special example of the twist (2.6). Compared

with the undeformed SUSY Hopf algebra, the twisted SUSY Hopf algebra is unchanged.
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In particular, the twisted coproduct is undeformed, which leads to the undeformed Leibniz

rule (2.19). However, the notion of chirality is lost and we have to apply the method

of projectors introduced in [20]. By including all constructed invariants, we formulate a

deformation of the usual Wess-Zumino action (5.2). Finally, we discuss some preliminary

renormalizability properties of the model. As expected, there are no tadpole diagrams and

no mass renormalization counterterms. All fields are renormalized in the same way, which

is another property of SUSY invariant theories. As the renormalization of the coupling

constant g is concerned, at present we cannot say if it is renormalized and how. However,

we see that the freedom in choosing terms in the action is partially fixed by demanding

the cancellation of divergences. That request leads to a2 = 0 and additionally we see that

both a1 and a3 terms are necessary.

Let us remark that the twist (2.6) leads to the ⋆-product (2.13) which has already

been discussed in [14]. In that paper the deformed Wess-Zumino Lagrangian has been

constructed in two different ways. The difference was present in the interaction terms.

Namely, one can take the term Φ3
⋆

∣

∣

∣

θθ
which (since Φ3

⋆ is not chiral) breaks 1/2 SUSY;

this term is equal to our I6 (4.8) and was not included in our deformed model (5.2) since

it is not SUSY invariant. Adding its complex conjugate breaks the full supersymmetry.

The other possibility which was considered in [14] was to take the term Φ3
⋆

∣

∣

∣

θθθ̄θ̄
as an

interaction term. Is is equal to our I7 (4.11). Since it is the highest component of the

superfield Φ3
⋆, it transforms as a total derivative and the action is invariant under the full

supersymmetry. However, its commutative limit is zero and it is not a deformation of

the usual interaction term. The commutative limit is obtained in [14] by adding the term

(Φ+)3⋆ which is undeformed and its complex conjugate reproduces the proper commutative

limit. We have seen that the action with only the I7 term is not renormalizable.

Renormalizability of the deformed Wess-Zumino models with the term Φ3
⋆ ∝ H3 was

studied, see for example [16]. To make these models renormalizable one has to add ad-

ditional terms to the original action. The main advantage of our model is the absence

of this problem. By including all possible invariants from the beginning we see that no

new terms are needed to cancel the divergences that appear. However, our results are not

complete since we calculated here only the divergences in the two-point functions. In the

forthcoming paper we will consider the vertex contributions and then we will be able to

tell if our present conclusions still hold.
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A Matrix elements of V

The matrix elements of V are given by

V11 = gC2
(

a2(�S + 2S� − γ5
�P − 2Pγ5

�)

+3a3(E� + (∂mE)∂m − (∂mG)γ5∂m −Gγ5
�
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−2Σmn∂mE∂n + 2Σmnγ5∂mG∂n)
)

(−i/∂ +m), (A.1)

V12 = gC2
[

a2

(

ψ� + 2�ψ
)

− 3a3m
(

�ψ + ∂mψ∂
m − 2Σmn∂nψ∂m

)]

, (A.2)

V13 = gC2
[

a2

(

− γ5ψ�− 2γ5
�ψ
)

+3a3m
(

− γ5
�ψ − γ5∂mψ∂

m + 2Σmnγ5∂nψ∂m

)]

, (A.3)

V14 = gC2
[

−ma2

(

ψ� + 2�ψ
)

+ 3a3

(

�ψ

+∂mψ∂
m − 2Σmn∂nψ∂m

)

�

]

, (A.4)

V15 = gC2
[

ma2

(

− γ5ψ� − 2γ5
�ψ
)

+3a3m
(

− γ5
�ψ − γ5∂mψ∂

m + 2Σmnγ5∂nψ∂m

)

�

]

, (A.5)

V21 = gC2
[

a2

(←−
� ψ̄ + 2ψ̄�

)

(−i/∂ +m), (A.6)

V22 = gC2
[

− a2(2E� + �E) +ma2(�S + S� +
←−
�S) + 3ma3

←−
�E

]

, (A.7)

V23 = gC2
[

a2(�G+G� +
←−
�G)

+ma2(�P + P� +
←−
�P ) + 3ma3

←−
�G

]

, (A.8)

V24 = gC2
[

ma2(2E� + �E)− a2(�S + S� +
←−
�S)� − 3a3

←−
�E�

]

, (A.9)

V25 = gC2
[

ma2(�G+G� +
←−
�G)

+a2(�P + P� +
←−
�P )� + 3a3

←−
�G�

]

, (A.10)

V31 = gC2
[

a2

(

−←−� ψ̄γ5 − 2ψ̄γ5
�

)

(−i/∂ +m)
]

, (A.11)

V32 = gC2
[

a2(�G+G� +
←−
�G)− a2(�P + P� +

←−
�P )− 3ma3

←−
�G

]

, (A.12)

V33 = gC2
[

a2(2E� + �E) +ma2(�S + S� +
←−
�S) + 3ma3

←−
�E

]

, (A.13)

V34 = gC2
[

− a2m(�G+G� +
←−
�G)

+a2(�P + P� +
←−
�P )� + 3a3

←−
�G�

]

, (A.14)

V35 = gC2
[

ma2(2E� + �E) + a2(�S + S� +
←−
�S)� + 3a3

←−
�E�

]

, (A.15)

V41 = gC2
[

3a3

(

− ∂mψ̄∂m − 2∂mψ̄Σmn∂n

)

(−i/∂ +m)
]

, (A.16)

V42 = gC2
[

− a2(�S + S� +
←−
�S) + 3a3(m�S − E�)

]

, (A.17)

V43 = gC2
[

a2(�P + P� +
←−
�P ) + 3a3(m�P +G�)

]

, (A.18)

V44 = gC2
[

a2gm(�S + S� +
←−
�S) + 3a3(−�S� +mE�)

]

, (A.19)

V45 = gC2
[

ma2(�P + P� +
←−
�P ) + 3a3((�P )� +mG�)

]

, (A.20)

V51 = gC2
[

3a3

(

∂mψ̄γ5∂m − 2∂mψ̄Σmn∂n

)

(−i/∂ +m)
]

, (A.21)

– 16 –



J
H
E
P
0
4
(
2
0
0
9
)
1
0
8

V52 = gC2
[

a2(�P + P� +
←−
�P ) + 3a3(−m�P +G�)

]

, (A.22)

V53 = gC2
[

a2(�S + S� +
←−
�S) + 3ma3(m�S + E�)

]

, (A.23)

V54 = −gC2
[

ma2(�P + P� +
←−
�P )− 3a3(−mG� + (�P )�)

]

, (A.24)

V55 = gC2
[

ma2(�S + S� +
←−
�S) + 3a3(mE� + (�S))�

]

. (A.25)

B Calculation of supertraces

Here we calculate the divergent parts of two supertraces: STr(K−1NK−1V ) and

STr(K−1NK−1NK−1T ). The following general formulas for the divergent parts of traces

are used

Tr(K−1fK−1g) =
i

8π2ǫ

∫

d4x fg, (B.1)

Tr(∂nK
−1fK−1g) =

i

16π2ǫ

∫

d4x ∂nfg, (B.2)

Tr(∂nK
−1f∂mK

−1g) = − i

8π2ǫ

∫

d4x (B.3)

×
(

1

6
∂m∂nfg +

1

12
ηmn�fg − 1

2
ηmnm

2fg

)

,

Tr(K−1f∂aK
−1g∂bK

−1h) =
i

32π2ǫ
ηab

∫

d4x fgh, (B.4)

Tr(K−1f) =
i

8π2ǫ
m2

∫

d4x f, (B.5)

Tr(∂aK
−1f) = 0, (B.6)

Tr(�K−1f) =
im4

8π2ǫ

∫

d4x f, (B.7)

Tr(�2K−1f) =
im6

16π2ǫ

∫

d4x f. (B.8)

• STr(K−1NK−1V )

Using the definition of Supertrace we obtain

STr(K−1NK−1V ) = −
∑

i

Tr(K−1N1iK
−1Vi1)

+
∑

i

Tr(K−1N2iK
−1Vi2) + . . .

+
∑

i

Tr(K−1N5iK
−1Vi5). (B.9)

The terms in (B.9) are

Tr
[

K−1N11K
−1V11

]
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= g2C2 i

2π2ǫ

∫

d4x
[

a2((�S)2 + (�P )2 − 4m2S�S − 20m4S2 − 4m4P 2)

+3a3(−m2P�G− 10m4SE +m2S�E − 2m4PG)
]

, (B.10)

Tr
[

K−1N23K
−1V32 +K−1N32K

−1V23

]

=
ig2C2

4π2ǫ

∫

d4x
[

− 2a2(G�G + 4m2G2)

+2m2a2(P�P + 4m2P 2) + 12a3m
4PG

]

, (B.11)

Tr
[

K−1N45K
−1V54 +K−1N54K

−1V45

]

=
i

2π2ǫ
mg2C2

∫

d4x
[

a2m(P�P + 4m2P 2) + 6a3m
3PG

]

, (B.12)

Tr
[

K−1V41K
−1N14 +K−1V51K

−1N15

]

= 3g2C2a3m
2 i

4π2ǫ

∫

d4x ψ̄�ψ, (B.13)

Tr
[

K−1N22K
−1V22 +K−1N33K

−1V33

]

= g2C2 i

2π2ǫ

∫

d4x

[

− 2a2

(

2m2E2 +
1

2
E�E

)

−m2a2(S�S + 4m2S2)− 6a3m
4SE

]

, (B.14)

Tr
[

K−1N44K
−1V44 +K−1N55K

−1V55

]

= −g2m2C2 i

2π2ǫ

∫

d4x
[

a2(4m
2S2 + S�S) + 6a3m

2SE
]

. (B.15)

Tr
[

K−1N42K
−1V24 +K−1N24K

−1V42 +K−1N35K
−1V53 +K−1N53K

−1V35

]

=
3ig2C2

2π2ǫ

∫

d4x
[

− 2a2(m
2S�S + 2m4S2)

−m2a3(6m
2SE + E�S)

]

, (B.16)

Tr
[

K−1N25K
−1V52 +K−1N52K

−1V25 +K−1N34K
−1V43 +K−1N43K

−1V34

]

=
3i

2π2ǫ
g2C2

∫

d4x
[

− 2a2(m
2P�P + 2m4P 2)

−m2a3(6m
2PG−G�P )

]

, (B.17)

Tr
[

K−1N21K
−1V12 −K−1N12K

−1V21 +K−1N31K
−1V13 −K−1N13K

−1V31

]

= g2C2 i

2π2ǫ

∫

d4x

[

a2(2im
2ψ̄/∂ψ + iψ̄/∂�ψ)

+
3

2
a3m

2ψ̄�ψ

]

. (B.18)
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Adding all the terms (B.10)–(B.15) we obtain

STr(K−1NK−1V ) = −g2C2 i

2π2ǫ

∫

d4x
[

3a3m
2(−2P�G

−ψ̄�ψ + 2S�E)

+a2((�S)2 + (�P )2 + 4m2S�S

−ψ̄i/∂�ψ − 2m2ψ̄i/∂ψ + 4m2P�P

+4m2E2 + E�E +G�G+ 4m2G2)
]

. (B.19)

• STr(K−1NK−1NK−1T )

Again, from the definition of Supertrace it follows

STr(K−1NK−1NK−1T ) = −Tr(K−1N1iK
−1NijK

−1Tj1)

+Tr(K−1N2iK
−1NijK

−1Tj2)

+ . . .

+Tr(K−1N5iK
−1NijK

−1Tj5). (B.20)

The divergences appearing in (B.20) are

Tr(K−1N11K
−1N11�(−i/∂ +m))

= 4g2m
i

8π2ǫ

∫

d4x
[

− 4S�S

−4P�P + 40m2S2 + 8m2P 2
]

, (B.21)

Tr(K−1N22K
−1N24K

−1
�)

=
4g2i

8π2ǫ

∫

d4x
[

−mE2 + 4m2SE − 3m3S2
]

, (B.22)

Tr(K−1N23K
−1N34K

−1
�)

=
4g2i

8π2ǫ

∫

d4x
[

−mG2 + 2mGP + 3m2P 2
]

, (B.23)

Tr(K−1N24K
−1N44K

−1
�)

=
4g2i

8π2ǫ

∫

d4x
[

m2SE − 3m3S2
]

, (B.24)

Tr(K−1N25K
−1N54K

−1
�)

= −4g2 i

8π2ǫ

∫

d4x
[

3m3P 2 +m2PG
]

, (B.25)

Tr(K−1N32K
−1N25K

−1
�)

=
4g2i

8π2ǫ

∫

d4x
[

2m2PG+mG2 − 3m3P 2
]

, (B.26)

Tr(K−1N33K
−1N35K

−1
�)

= 4g2 i

8π2ǫ

∫

d4x
[

4m2ES + 3m3S2 +mE2
]

, (B.27)
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Tr(K−1N34K
−1N45K

−1
�)

= 4g2 i

8π2ǫ

∫

d4x
[

3m3P 2 −m2GP
]

, (B.28)

Tr(K−1N35K
−1N55K

−1
�)

= 4g2 i

8π2ǫ

∫

d4x
[

m2ES + 3m3S2
]

, (B.29)

mTr(K−1N24K
−1N42K

−1
�)

= 4g2 i

8π2ǫ

∫

d4x
[

3m3S2 −m2ES
]

, (B.30)

mTr(K−1N25K
−1N52K

−1
�)

= 4g2 i

8π2ǫ

∫

d4x
[

3m3P 2 +m2PG
]

, (B.31)

mTr(K−1N35K
−1N53K

−1
�)

= 4g2 i

8π2ǫ

∫

d4x
[

m2ES + 3m3S2
]

, (B.32)

mTr(K−1N34K
−1N43K

−1
�)

= 4g2 i

8π2ǫ

∫

d4x
[

−m2GP + 3m3P 2
]

, (B.33)

Tr(K−1N33K
−1N33K

−1
�)

= 4g2 i

8π2ǫ

∫

d4x (E +mS)2, (B.34)

Tr(K−1N32K
−1N23K

−1
�)

= 4g2 i

8π2ǫ

∫

d4x
[

mG2 −m3P 2
]

, (B.35)

mTr(K−1N35K
−1N53K

−1
�)

= 4g2 i

8π2ǫ

∫

d4x
[

m2ES + 3m3S2
]

, (B.36)

Tr(K−1N54K
−1N45K

−1
�)

= −4g2 i

8π2ǫ

∫

d4x m3P 2, (B.37)

Tr(K−1N55K
−1N55K

−1
�)

= 4g2 i

8π2ǫ

∫

d4x m3S2, (B.38)

Tr(K−1N22K
−1N22K

−1
�)

= 4g2 i

8π2ǫ

∫

d4x (E −mS)2, (B.39)

Tr(K−1N21K
−1N14K

−1
�)

= 4g2 im

8π2ǫ

∫

d4x

[

i

2
ψ̄/∂ψ −mψ̄ψ

]

, (B.40)

Tr(K−1N31K
−1N15K

−1
�)

= −4g2 im

8π2ǫ

∫

d4x

[

i

2
ψ̄/∂ψ +mψ̄ψ

]

, (B.41)
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Tr(K−1N31K
−1N13K

−1
�)

= −4mg2 i

8π2ǫ

∫

d4x

[

i

2
ψ̄/∂ψ +mψ̄ψ

]

, (B.42)

Tr(K−1N21K
−1N12K

−1
�)

= 4g2m
i

8π2ǫ

∫

d4x

[

− i

2
ψ̄/∂ψ +mψ̄ψ

]

, (B.43)

Tr(K−1N13K
−1N31K

−1(−i/∂ +m)�) + Tr(K−1N12K
−1N21K

−1(−i/∂ +m)�)

= 8g2 i

8π2ǫ

∫

d4x iψ̄/∂ψ, (B.44)

Tr(K−1N42K
−1N22�K

−1
�)

= 4g2 i

8π2ǫ

∫

d4x
[

3m2SE − 3m3S2
]

, (B.45)

Tr(K−1N43K
−1N32�K

−1
�)

= 4g2 i

8π2ǫ

∫

d4x
[

3m2PG− 3m3P 2
]

, (B.46)

Tr(K−1N44K
−1N42�K

−1
�)

= −12g2 i

8π2ǫ

∫

d4x m3S2, (B.47)

Tr(K−1N45K
−1N52�K

−1
�)

= 12g2 i

8π2ǫ

∫

d4x m3P 2, (B.48)

Tr(K−1N54K
−1N43�K

−1
�)

= −12g2 i

8π2ǫ

∫

d4x m3P 2, (B.49)

Tr(K−1N55K
−1N53�K

−1
�)

= 12g2 i

8π2ǫ

∫

d4x m3S2, (B.50)

Tr(K−1N52K
−1N23�K

−1
�)

= 12g2 i

8π2ǫ

∫

d4x
[

m2PG+m3P 2
]

, (B.51)

Tr(K−1N53K
−1N33�K

−1
�)

= 12g2 i

8π2ǫ

∫

d4x
[

m2SE +m3S2
]

. (B.52)

Summing the terms (B.21)–(B.52) we obtain

STr(K−1NK−1NK−1T ) =
2ia1C

2m2g2

π2ǫ
(B.53)

×
∫

d4x
[

S�S + P�P − ψ̄i/∂ψ + E2 +G2
]

.
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